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The CGNS system consists of a collection of conventions, and conforming software, for the storage and retrieval of
Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and
helps stabilize the archiving of aerodynamic data. The data are stored in a compact, binary format and are accessible
through a complete and extensible library of functions. This API (Application Program Interface) is platform
independent and can be easily implemented in C, C++, Fortran and Fortran90 applications. The CGNS system supports
structured, unstructured and mixed topology, where multi-block connectivity may be either one-to-one abutting,
mismatched abutting or overset. It defines standards for the storage of grid coordinates, flow solutions, boundary
conditions, convergence history, reference state and geometry data. Dimensional units and nondimensionalization
information may be associated with each type of data. Additionally, it provides conventions for archiving the
governing equations including the gas, viscosity, thermal conductivity, turbulence and diffusion models. The CGNS
system can be extended to other types of engineering analysis data, and serve multi-disciplinary applications. It is
offered to the CFD community for the purpose of establishing a standard for aerodynamic data storage. This paper
presents the different components of the CGNS system, from the essence of its constituents to its supporting data
structures and software capacity. It demonstrates the facility to implement the CGNS system through a series of short
examples, followed by a review of its incorporation into both research and commercial CFD applications.

1. Introduction etc. When integrated over the entire industry, these extra

. ) ) efforts reduce the cost effectiveness of CFD while impairing
A series of meetings, held over approximately two yearsis development.
between airframe manufacturers and the government

research community, addressed the improvement oThe “CFD General Notation System” (CGNS) was

means for transferring NASA technology to industrial conceived to provide a general, portable and extensible
use. It was held that a principal impediment tc)standard for recording and recovering analysis data

technology transfer was the widely disparate data@Ssociated with the numerical solution of fluid dynamic

handling mechanisms endemic to the code developmer?tquat'oné' It offers the opportunity for seamless

process. It is unfortunately too common to see the Samgommunication between sites, platforms, and applications.

CFD data set translated into various formats to perforn{?’y improving the interoperability of existing and future

the different tasks related to CFD analysis. Applicationsc':D tools, the CGNS system allows new software

such as grid generation, flow computation, postdevelopment to focus on functionality and reliability. It
processing or data visualization often use their 0Wnshould therefore lead to the_ developmgnt of shared, reusable
archiving system. As a result, different copies of thesoftwarg §_e|ected on technical merit without concern for 1/O
same data must coexist to insure compatibility with thecompanblhty.

different software tools. These data sets hold the sam&he principal target of the CGNS system is the data
information expressed in different data structure systemsormally associated with compressible viscous flow (i.e. the
and formats. Not only does this multiplicity of the data Navier-Stokes equations), but the standard is also applicable
set waste storage media capacity and CPU time, but o simplified models such as Euler and potential flows.
also generates an enormous overhead in terms of dafduch of the standard and conformed software utilities are
translator development, additional software and datapplicable to computational field physics in general.
management, customization of pre- and post- processorBjisciplines other than fluid dynamics would need to
augment the data definitions and storage conventions, but
the fundamental database software, which provides platform
independence, is not specific to fluid dynamics.
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description. A database may contain any number opartitioning of the data over several files without reducing
structured and/or unstructured zones. These zones atke performance of the data exchange. The individual files
described with their grid coordinates and connectivityare more portable due to their reduced size, and enhance the
information. Three types of multi-block connectivity are functionality of the system. For example, the surface mesh
supported; overset (chimera), one-to-one abutting (pointnay be kept separately from the field mesh, or several
matched), and mismatched abutting. For unstructuredolutions may be linked to the same grid definition. Various
zones, the element connectivity can be stored for a widenesh configurations can be combined instantly since the
range of linear and higher order element shapes. different databases need not be merged into a single file, but

The mesh data is linked to the CAD data within the My be _simply_ referenced. _This flexibility _facilitates
CGNS system to facilitate quick re-meshing after desigrPr@metric studies where various sub-domains may be
changes or mesh optimization. The flow solutions may2utomatically cycled over, and eases the management of
be defined at the vertices, or at cell, face or edge centerdlt€rchangeable parts.

Solution vectors are stored using precise namingrThe CGNS system may be implemented in any CFD
conventions. Any number of flow variables may be applications through the use of a complete and self-
recorded, with or without use of the standardized namesdescribing set of functions. This API is accessible through

The boundary condition specifications were developed td° or Fortran77 function calls allowing implementation in C,
combine simplicity of initial implementation and C++, Fortran77 and Fortran90 applications. The databases

generality to facilitate future extensions. They defineth€mselves are stored in compact C binary files. They are

boundary condition types, which establish the equationénade machine independent through internal byte ordering
to be enforced. Dirichlet or Neumann boundarytranslations, performed as needed and invisible to the user

condition data may additionally be specified using© application. The API performs extensive error checking
CGNS conventions for data-name identifiers. The©n the database and informs the user of any irregularities via

boundary condition specifications are general andP'€CiSe error diagnosis messages.
flexible enough to provide for future extensions. Currently the CGNS system is available on most

The CGNS system also provides for the storage ofrchitecture commonly used for CFD analysis: Cray/Unicos,
several types of auxiliary data. This includes theSUN/Solaris,  SGIIRIX, IBM/AIX,  HP/UX, DEC-

conventions for archiving the governing flow equations,APN&/OSF.  Windows NT support, on Dec and Intel

the reference state quantities, the convergence histogfatforms, is planned in the near future.  Several
information, generic discrete or integral data, applications, in the CFD research community and in
dimensional units and exponents angindustry, have already incorporated the CGNS standard

nondimensionalization information. User's comments orSUccessfully.
documentation may be appended nearly anywhere, and Tthis paper describes the different elements of the CGNS
is also possible to add user defined or site specific data. system and presents examples of its implementation.

Not all of these data need to be present in the CGNSSection 2 is divided into several sub-sections, each

database at any particular time. The overall view is thaf€Scribing an individual component of the CGNS system.

of a shared database accessible by various software too]4'€_hierarchical data structure “Advanced Data Format’

common to CFD: flow solvers, grid generators, field (ADF) used to archive the databases is first presented. It is

visualizers, post-processors, and so on. Each of thes¥PPorted by a data exchange library called ADF Core,
applications serves as an editor of the data, reading’hich comprises a set of low level routines for 1/O

adding to or modifying it according to that application's operations on an ADF file. Following the presentation of
specific role. the ADF and ADF Core, the “Standard Interface Data

. . ) Structures” (SIDS) are introduced. The SIDS specification
Because of its generality, CGNS provides for the gngiitutes the soul of the CGNS system. Not only does it
recording of much more descriptive information than yefine the CGNS data structure, but it also establishes
current applications normally use. ~ However, the, acisely the intellectual content of CFD-related data and
provisions for these data are layered so that much of it i eseribes conventions and nomenclature to standardize its
optional. It should be practical to convert most Cu"emarchiving. Once the two basic elements of the CGNS
applications to the CGNS system with little or no qyqtem are described, the ADF and the SIDS, the next sub-
conceptual change, retaining the option to takegection explains how to combine them together to form the
advfa\ntage of more elaborate description as that becomesg g system. This process is referred to as the “SIDS-to-
desirable. ADF File Mapping”. The final element of the system is the
A CGNS database may be written over any number ofCGNS mid-level library of software functions. It integrates
data files. Efficient internal linking allows the the standards established by the other constituents of the
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CGNS system into a user friendly APl. The CGNS O Data type: A character field specifying the type of

library is designed to facilitate the implementation of data (e.g. real, complex, character) associated with
CGNS into any CFD applications. Section 3 the node.

demonstrates the implementation of the CGNS system 0 Number of dimensions: The dimensionality of the
through a series of short examples, and presents an data.

overview of commercial and research CFD tools O Dimensions: An integer vector containing the
currently supporting the CGNS system. Finally, this number of elements within each dimension.

paper concludes with a calendar of public releases O Data: The data associated with the node.

planned for 1998, followed by recommendations for \n ADF data structure is a directed graph. Since the nodes
future enhancements. hold the information about their children but ignore the
identity of their parents, the hierarchy may only be traversed

2. The Elements of the CGNS System in one direction. The root node points to its children, which
in turn point to theirs, and so forth. This simple pattern is
2.1 The Data Structure ADF repeated throughout the whole file resulting in a flexible

hierarchical structure. There is no restriction on the number

The “Advanced Data Format” (ADF) is a concept of children that a node can have, or on the number of levels
defining how the data is organized in the storage média.jn the hierarchy.

It is based on a single data structure called an ADF node , . , - .
designed to store any type of data. Each ADF file iSA node’s children may be defined within the same ADF file,

composed of at least one node called the “root”. The?' N @ different one. ADF supports the linking of ADF

ADF nodes follow a hierarchical arrangement from theno.des .stored In any ADF files. Smpe an ADF. node may
root node down, as shown in figure 1. point directly to a child node located in another file, there is

no performance penalty in using this feature. Internal and
external links are illustrated in figure 1. The node L1 is
linked to the node N5 within the same data file whereas the
node L2 points to the node F4 located in a different ADF
file. An ADF database is defined as the complete tree
associated with a single ADF root node; this database may
encompass several ADF files through the use of links.

ADF File #1

This hierarchical structure is particularly suited for the
storage of CFD databases, which are typically composed of
a small number of very large arrays. A tree structure may
be quickly traversed and sorted without the need of
processing irrelevant information. The data exchange may
therefore concentrate on the targeted arrays, resulting in
ADF File #2 improved performance. Although especially appropriate for
the management of CFD-related information, the ADF is
general and can be used to archive any type of data.

Fig.1 ADF Hierarchy of Nodes
The ADF file has a header section that contains information
The ADF node structure is composed of the following about the file itself, such as the ADF library version used to

information: create and modify the file, the date and time of creation and
Q ID: A unique identifier to access a node within maodification, and the data format used in the file (IEEE Big
a file. or Little Endian, Cray, etc.).
0 Name: A character field used to name the node.
It must be unique for a given parent. 2.2. ADF Supporting Software: The ADF Core
O Label: A character field used to indicate the . ) )
type of data contained in the node. The ADF Core is a library of low level 1/O subroutines
a Number of sub-nodes: The number of children designed to implement the ADF concéphe ADF format
directly attached to a node. and library were developed as part of the CGNS project
O Names of sub-nodes: The list of children after examination of several data systems. These include
names. the “Hierarchical Data Format” (HDF) developed at the

National Center for Supercomputing Applications (NCSA)
at the University of lllinois, the “Common File Format”
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(CFF) created at McDonnell-Douglas Corporation (now| Type |Notation Machine representation
Boeing St-Louis), and the “Network Common Data Big Endian Little Endian Cray
Form” (netCDF) sponsored by the National Science 32bit | 64bit | 32bit | 64bit
Foundatior:®° Although the existing systems present [ nodata | MT } ) ) ) )
interesting features, none provide an appropriate iyeger32 | 14 14 14 14 14 18
hierarchical structure while affording the portability and [eger64 | 18 _ 18 ) 18 18
extensibility of C software. It was therefore preferable [ goeq | Us 4 4 4 14 8
to develop the ADF system. int-32
The ADF Core is written in ANSI C to enhance the | unsigned | U8 - 18 - 18 18
portability of the software, but provides a complete| int64
Fortran interface. It enables construction and browsing rea.32 R4 R4 R4 R4 R4 RS
of new or existing ADF tree structures. The ADF Core [ ;54 RS RS RS RS RS RS
is composed of 34 functions performing the following [ riexea| x4 | RaRs | R4R4 | RaR4 | RaR4 | RORS
operations: , complex 128| X8 | R8R8 | R8RS | R8RS | R8RS | R8RS
Q open, close or delete and ADF file character | c1 1 o1 1 1 1
Q read or set the data binary format
. . byte C1 C1 ct ct C1 1
Q getthe root-id or a node-id
Q create, delete or move a node Table 1. ADF Supported Data Types
O create, read or test a node link When opening a new ADF file, it is also possible to choose
0 get the children of a node the binary representation independently of the system
Q read or write the constituents of a node: name architecture. For example, an ADF file may be written in
label, data type, dimension, dimension vectorthe Cray native format from an SGI running IRIX (or vice
and data versa). If unspecified, the ADF Core uses the local
0 perform version and error control architecture native format by default.

An ADF database is self-describing in the sense that itiSThe ADF Core has been tested and used on several
not necessary to know its contents in order to read itplatforms, namely Cray/Unicos, SUN/Solaris, SGI/IRIX,
Using the ADF Core, one can easily browse through thagMm/AIX, HP/UX, DEC-Alpha/OSF and Intel-Paragon.
hierarchy of an ADF database to reveal its constituents. Aside from CGNS, the ADF Core has also been adopted as
The databases are stored in compact C binary formathe underlying data structure for the latest release of the
Each ADF node data field is characterized with a dataCommon File Format” (CFF), which is used by the
type and the dimension of the data array. The supporteMPARC Alliance’s code WIND>** CFD codes could use
data types are integer 32/64, unsigned integer 32/64, reéte ADF Core directly, but have the advantage of higher
32/64, complex 64/128, character, byte and link. Thelevel routines provided by the CGNS library (section 2.4);
ADF Core uses its own notation convention to identify this library is built on top of the ADF Core. The ADF Core
the different data types independently of the systenfoftware and documentation are available at
architecture. Table 1 lists the supported data types witfttp://www.cgns.org.

their corresponding notation and machine

representations. A given data type notation results i2.3. The Standard Interface Data Structures, SIDS

different binary representations depending on the system e
architecture yrep P g y The “Standard Interface Data Structures” specification

. _ constitutes the essence of the CGNS system. While the
Endian standard, the Intel-Paragon and DEC-Alphgmplementation issues, the SIDS specification concerns
elected the IEEE Little Endian numeric format. jtself with defining the substance of CGNS. It precisely
Additionally binary files may be written using either @ gefines the intellectual content of CFD-related data,

32 or a 64-bit representation. These differences in thenc|yding the organizational structure supporting such data
architecture native formats are resolved within the ADFang the conventions adopted to standardize the data
Core insuring machine independence. An ADF file gxchange proceds.

keeps track of the data format and operating system use_ldh . . .
at its creation. Whenever a binary format translation is, e SIDS are designed to support all types of information

necessary, the ADF Core executes it automatically. ThiénVOlVed in CFD analysis. While the initial target was to

is accomplished internally - without the need of any userSStablish a ~standard for 3D ~structured multi-block

: ; compressible Navier-Stokes analysis, the SIDS extensible
intervention. i ;
framework now includes unstructured analysis, 2D
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configurations, hybrid topology and geometry-to-mesh2.3.1 CGNS Base Data StructureCGNSBase_t

association.  Although the SIDS specification iS the gata structure at the root of the CGNS tree graph is

independent of the physical file formats, its design was.g|iedcoNSBase_t. It is illustrated in figure 2. It contains
targeted towards implementation using the ADF Core

library. Some of the language components used to | CGNSBase_t |

define the SIDS are meant to directly map into elements

of an ADF node. Furthermore, the data structures | Zone_t |__| ZoneUnstructured t |
specified in the SIDS are organized in a hierarchical

manner in accordance with the ADF topology. | Family_t |——| ReferenceState_t |
The data sets typical of CFD analysis tend to contain a |C0m,ergenceHismry_t |__| FlowEquationSet_t |
small number of extremely large data arrays. This

implies that the 1/0 system must efficiently store and | pimensionaiunits t |4 DataClass t |
process large data arrays. The SIDS are designed to | Descriptor t |__| IntegralData, ¢ |
optimize the performance of the data exchange process = —
supported by the ADF Core. A second implication of | IndexDimension |—

the nature of the data resides in the opportunity to

include thorough description in the file with relatively Fig.2 CGNS High Levels Chart

little storage overhead and performance penalty. Fof,q dimensionality of the computational  grid

example, the flow solution of a CFD analysis may (;hqexpimension ) and several sub-structures such as the
contain several millions values. Therefore, with little ;oneq (structured or unstructured blocks) constituting the
overhead, it is possible to include information describindcEp model.  ThecGNSbase t includes also the family

the flow variables stored, their location in the grid, and g, stryctures where geometry-to-mesh associations are
the dimensional units or nondimensionalization oo ded. Additionally, auxiliary information applicable to
information associated with the data. The SIDSy,q entirecoNSBase t data structure may be stored at this
specification takes advantage of this situation anqeye| This includes the reference state data, dimensional
includes an extensive description of the information nits nondimensionalization informatiomataClass_t ),
contained in its data structures. flow equation sets, documentatiomescriptor t ) and
Other design considerations were the minimization ofconvergence history data structures. The dimensionality of
duplicated data within the hierarchy and the ability tothe computational grid IfdexDimension ) is the sole
include documentation throughout the databasemandatory element of this data structure. It is defined as the
Whenever possible, generic data structures wer@umber of indices needed to uniquely identify a vertex
developed to hold various types of CFD information. Onwithin the grid.
the other hand, consistency dictated the development 6f 3 5 7qne:7one t

specialized data structures for certain types of CFD- ) ) ]
related information. The zone data structure contains all the information

) ] ) pertinent to an individual zone or grid block within the
The SIDS conventions provide for the recording of anygmain.  Two types of zones are defined in the SIDS,
ext_remely_complete and flexib_le problem deSf:ription'ZoneUnstructured t andZone_t for unstructured and
This section gives an overview of the main datagictured mesh block respectively. For both structured and
structures defined in the SIDS, as well as some examplegnsiryctured blocks, the only mandatory elements of the
of the standardized nomenclature. It demonstrates thg,ne gata structure are the number of cells and vertices
vast range of CFD analysis data covered by thiSignained in the zone. A zone may optionally contain sub-
standard, and the explicitness in which the data can bgyciures defining the physical coordinates of the
archived using the SIDS conventions. It is important 0o tational grid, the flow solutions, the interface
keep in mind, while reading the next paragraphs, that albonnectivity and the boundary conditions. Additionally,
of these data need not be present. The SIDS are layeredyijiary information applicable to the entire zone may be
so that much of its data structures are optional. stored at this level. This includes the data structures defined
In the following sub-sections, standard SIDS names andor reference state data, nhondimensionalization information,
identifiers are differentiated from the regular text by thedimensional units, flow equations set, documentation and
use of a different character font. Most data structurezone convergence history. Figure 3 illustrates the
names carry the suffixt (for type) to distinguish them constituents of a structured zone data structure.
from regular data. Unstructured zones contain one additional data structure for

the definition of the element connectivity data.

or ZoneUnstructured_t
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| The flow solution data structure contains all the sub-
structures found in the grid coordinate structure (data arrays,
dimensional information, rind-data and documentation),
| with additionally the grid location parameter. Unlike the
[ zoneGridconnectivity_t - ZoneBC_t | grid coordinates, which always coincide with the vertices,
|

| Zone_t

| GridCoordinates_t |——| FlowSolution_t

the flow solutions may be defined at the vertices, or at cell,
face or edge centers. This extra feature necessitates the
| DataClass_t |__| DimensionalUnits_t | creation of two different data structures to hold grid
coordinates and flow solutions. Once again, the SIDS
specification regulates the variable names in order to

| Descriptor_t |——| ReferenceState_t

| FlowEquationSet_t |——| ConvergenceHistory_tl

| Nr of Vertices & Cells |_ facilitate a standardized data exchange. A list of data-name
. identifiers for typical Navier-Stokes solution variables was
Fig.3 Zone Data Structure established, and can be easily extended if needed. It

contains identifiers such a#ressure , VelocityX
2.3.3 Grid Coordinates: GridCoordinates_t SkinFrictionY ~, MassFlow, etc. It is also possible to

The physical coordinates of the computational grid are€cord any type of site specific variables, even if they are
defined by the grid coordinates data structure, as showRot included in the SIDS nomenclature.

in figure 4. This structure contains a list of data arrays2.3.5 Zone connectivity:ZoneGridConnectivity t

The zone connectivity information may be recorded for each
zone under a general data structure called

GridCoordinates_t

ZoneGridConnectivity_t . This data structure is

| DataArray_t Rind_t | illustrated in figure 5. It holds three sub-structures

- - - responsible  for the grid connectivity data,
|D''me'ns'cm‘"‘IUmts—t DataClass_t | GridConnectivity _t , GridConnectivityltol_t , and
OversetHoles_t . It may also include some

| Descriptor_t > .
documentation recorded in the sub-structure

Descriptor_t

Fig.4 Grid Coordinates Data Structure

representing the individual components of the position |ZoneGridConnectivity_t|
vector. It also provides a mechanism for identifying
rind-point data (dummy layers) included within the

| GridConnectivity _t |——| GridConnectivityltol_tl

position  vector arrays. If necessary, the

nondimensionalization information and dimensional unit | OversetHoles t |__| Descriptor_t |
sub-structures may also be defined. — —

The SIDS support coordinate definition in Cartesian, Fig.5 Zone Grid Connectivity Data Structure
cylindrical and spherical coordinate systems. In

addition, it also provide the means to define local All three types of multi-block connectivity may be defined
(auxiliary) coordinate systems, often used to defineUsing the general connectivity sub-structure called
normal or tangential stresses. A series of standardize@ridConnectivity_t . It contains the list or range of
names supplied by the SIDS unambiguously identifiegndices defining the interface in the current zone (receiver),
the content of each coordinate data array. These datdbe name of the adjacent zone (donor), the list of points on
name identifiers are self-describing, for examplethe donor side and a parameter specifying the type of
CoordinateX  and CoordinatePhi . connectivity.

2.3.4 Flow Solution: FlowSolution t If the interface is constituted of points having consecutive
B indices, the patch may be defined by simply referencing the

The flow solution data structuréowSolution t , is first and last indices of the range. This patch definition

used to record one solution data set. There is no limit Onmethod is calledPointRange . When the points do not

the number of solutions sets contained in a zone dat% L . .
. . . ave consecutive indices numbering, they are all recorded in
structure. Each solution set, in term, may include one tg

. : a structure calledPointList . For example, an abutting
several solution vectors. A flow solution data structure )
- one-to-one interface between two structured blocks
could be used, for example, to hold the initial or restart

: - represents a rectangular sub-range in the computational
solution, while a second one could serve to record the P 9 9 P

. : : domain. It can be simply defined usingRwintRange
computed solution after some number of iterations. Py grol g
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For overset interface, the points on the receiver sidgrovides for the recording of a boundary condition type
identify the fringe points outlining the overset hole. (BCType_t) as well as one or more sets of boundary
These are most likely non-consecutive indices requiringcondition data BCDataSet t ). The BC_t data structure
the use of @ointList  representation. also contains information describing the patch itself, such as

The list of points on the donor sidepintListDonor its location PointRange or PointList ) and its normal
contains the images of the receiver zone interface point{ector definition. — Figure 6 illustrates the sub-structures
in the donor zone. These are real values identifying th&°ntain in the zone boundary condition data structure,
bi- or tri-linear interpolation factors used to define the 20N€BC_t. The generic term “Auxiliary Data” is used in
location of each receiver point in the donor zone grid.P!ace of the  sub-structures ReferenceState t

For the particular case where the points on the donor sigg'mensionalunits_t, DataClass_t , and
coincide with those on the receiver side, the donor point£escriptor_t

correspond to the indices of the nodes on the donor side.

If the donor zone is unstructured, each receiver node is &

linked to an element of the unstructured block, in |

T . . BC_t I I Auxiliary Data I
addition to the interpolation factors. The types of
connectivity are identified using the standardized names PointRange \rwardNormal
Overset , Abutting andAbuttingltol . or Pointlist
A special sub-structure is defined in the SIDS for the BCType_t Auxiliary Data
recording of an abutting interface patch with one-to-one
point matching between two adjacent structured zones. BCDataSet_t
In this particular case the connectivity may be entirely
defined by simply identifying the range of points - -

BCData_t GridLocation_t

delimiting the interface in both adjacent zones, and a Dirichlet or Neumann
transformation matrix describing the relative indices
orientation of the zones. This information is recorded in

GridConnectivityltol _t , a special data structure Fig.6 Zone Boundary Conditions Data Structure
created for this particular case.

Auxiliary Data

The first item identifying the boundary condition equations

The grid connectivity information for overset grids must . S
L to be enforced at a given boundary location is the boundary
also account for the overset holes within each zone.

These holes identify regions where the flow solution iscondltlon_type,BQType_t . The .boundary pondmon types
. ; o . : are subdivided in two categorie®&CTypeSimple_t and
ignored since it is being solved in some other

overlapping zone. The data struct@eersetHoles_t BCTypeCompound_t ' Fo_r simple boundqry conditions, the
o : - equations and data imposed are fixed, whereas for
located also within theZoneGridConnectivity t i . .
o g compound boundary conditions, different sets of equations
structure, holds the definition of the holes within a zone.

The OversetHoles_t data structure provides for the g(r)eur:g]aeosedﬂ?:pggj:é%ronccl)?](g?tliofrl]ovtv Ce%n(ztrlgni?ie?]ttiffzg
recording of aPointList or a list of PointRange Y. y yp

any relevant documentation and the grid location (vertexus‘Ing standardized names such  a&CDirichlet

or cell center) referenced by the point indices BCwallViscous  and BCinflowSubsonic . The second
- ' item used in the definition of a boundary condition is the
2.3.6 Zonal Boundary Condition: ZoneBC_t boundary condition data se#CDataSet_t . It holds a list

The boundary conditions can be defined either on meskf variables defining the boundary condition. Each variable
patches or on geometrical entities (explained in sectiofindy be given as global data or local data defined at each
2.3.12). Associating boundary conditions to meshgrid point of the boundary condition patch.

patches permits specification of local data sets at thehe coupling of a boundary condition type and a boundary
vertices or face centers of the boundary condition patcheondition data set allows formation of the governing
The zonal boundary condition structugneBC_t, also  equations at the boundary. For example, the boundary
provides a means to define boundary conditions withoutondition typeBCNeumannindicates a Neumann condition
requiring geometric data in the file. X/ at the boundary. Her®) stands for the solution
Within the hierarchy, th&oneBC_t structure is located Vector andn for the normal to the boundary. The precise
directly under each zone and contains the list oféquation is then built using the boundary condition solution
boundary condition structure®¢_t) pertaining to the data specified in thBCDataSet_t :

zone. EachBC_t sub-structure contains the boundary AQIdN = (AQIAMN)specitied

condition information for a single patch of the zone. It
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2.3.7 Flow Equation Set:FlowEquationSet_t standardized name identifiersidealGasConstant

The FlowEquationSet_t ~ data structure is used for SPecificHeatvolume —, etc.

recording a general description of the governing flowThe molecular viscosity model structure,
equations. This data structure may be included in theviscosityModel_t , specifies the model used for relating
CGNSBase_t structure or at the zone level, depending if molecular viscosity g) to temperature. It supports constant,
the equations defined are applied to the entirepower law and Sutherland's Law models, as well as their
configuration or to a specific zone. related quantities.

The flow equation set data structure was designed tdhe ThermalConductivityModel_t structure specifies
balance the opposing requirements of extensibility forthe model used for relating the thermal conductivity
future growth and initial ease of implementation. It is coefficient k) to the temperature. The SIDS support the
intended primarily for archival purposes, providing constant Prandtl numbeP( = u c/k) case, power law and
additional documentation of the flow solution. the Sutherland's Law, with their related quantities.

However, it is foreseeable that these flow equationthg TyshylenceClosure t structure describes the

structures may also serve as inputs for grid generatorg, i jence closure for the Reynolds stress terms of the
flow solvers, and post processors. Reynolds-averaged Navier-Stokes equations. The types
The FlowEquationSet_t data structure provides for supported areEddyViscosity , ReynoldsStress and

the storage of the general class of governing equation®ReynoldsStressAlgebraic . The SIDS support
the gas, viscosity, thermal conductivity and turbulenceturbulence models, such aggebraic_Baldwin-Lomax

models, the turbulent closure equation, and theor OneEquation_Spalart-Allmaras , for example.
dimensionality of the governing equations. Each ofDetails on turbulence closure and modeling can be found in
these equations or models forms a sub-structure of theeference 2.

FlowEquationSet_t structure. The flow equation set 5 3 g Reference StateReferenceState t

data structure is illustrated in figure 7. )
The ReferenceState_t data structure contains a set of

reference state flow conditions defined at a reference
location or condition. The use of data-name identifiers
allows once more the standardization of the data. The

FlowEquationSet_t

| GoverningEquations_t |“| GasModel_t | ReferenceState_t  structure holds the definition of flow
| ViscosityModel t |__I ThermaIConductivityModeI_t| state quantltle§ such agelocitySound , Temperature

PressureStagnation , etc. It also allows for the storage
| TurbulenceModel_t |——| TurbulenceClosure_t | of the dimensional units and any related documentation.

EquationDimension |__I Descriptort | 2.3.9 Data Class and Conversion

DataClass_t identifies the class of a given piece of data.
Fig.7 Flow Equation Set Data Structure These classes divide data into different categories depending
on dimensional units and normalization associated with the
The governing equation class currently supporteddata. The data class calleBimensional  specifies
include full potential, Euler, Navier-Stokes laminar, dimensional data. Nondimensional data that is normalized
Navier-Stokes  turbulent, Navier-Stokes laminarby dimensional reference quantities are included in the data
incompressible and Navier-Stokes turbulentclass  NormalizedByDimensional . In  contrast,
incompressible. When the Navier-Stokes equations arslormalizedByArbitraryDimensional specifies non-
used, the governing equation  sub-structuredimensional data typically found in completely
(GoverningEquations_t ) provides for the recording nondimensional databases, where all fields and reference
of the diffusion terms modeled in the flow equations. data are nondimensional.NondimensionalParameter
The thermodynamic gas model data structure,indicates nondim(_ensional. .parameters such as the Mach
GasModel_t , specifies the equation of state used in theNumber and the lift coefficient. Constants suchrasre

governing equations to relate pressure, temperature arfifSignated by the data classnensioniessConstant

density. Two model types are supportedeal and The DataConversion_t data structure contains

VanderWaals . This data structure also allows for the conversion factors for recovering raw dimensional data from

archiving of related quantities such as the ideal gagiven nondimensional data. These conversion factors are

constant R) or the specific heat at constant pressure ortypically associated with nondimensional data that is

volume €, c). These are recorded using the SIDSnormalized by dimensional reference quantities (class
NormalizedByDimensional ).
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2.3.10 Dimensional Units and Exponents for referencing geometric entities stored in a CAD database.

The data structur®imensionalUnits_t describes the There is rarely a one-to-one connection between mesh
system of units used to measure dimensional data. It isegions and geometric entities. Consequently, the mesh-
composed of a set of types that define the mass, lengtlyeometry associations make use of a layer of indirection.
time, temperature and angle units. Rather than linking the geometry data to the mesh entities

The dimensionality of the data is described by defining("°des, edges and faces), these data are associated with

the exponents associated with each of the fundamentéTtermediate objects. The intermediate object; are in turn
units, i.e. mass, length, time, temperature and angle. Thinked to the nodal regions of the computational mesh.

dimensional exponents are recorded in the data structurb€S€ intermediate objects are called CFD families. Node
DimensionalExponents_t and family association is implemented by assigning a family

o . name to each boundary condition patch of the mesh zones.
2.3.11 Precedence Rule Within the Hierarchy These family names serve as pointers to the various
A few types of data structures defined in the SIDS mayFamily t sub-structures bearing the same names.
be recorded at several levels of the hierarchy. Thes§pe pamily t  data structure is illustrated in figure 9. It
include entities for describing data class, system of.gntains two main sub-structureseometryReference._t
dimensional units, reference states and flow equationy 4 FamilyBC._t It may also contain any “related
sets. The precedence rule established by the SIDS statg§.,mentation.
that if such structures are present at one level, they take
precedence over all corresponding information existing
at higher levels of the CGNS hierarchy. Essentially, the
SIDS specification establishes globally applicable data | |
with provisions for recursively overriding them with |GeometryReference_t|| FamilyBC_t || Descriptor_t |
local data.

The ReferenceState t  data structure for example, Fig.9 Family Data Structure

may be defined within aCGNSBase_t structure, a The GeometryReference t  data structure identifies the
Zone_t or ZoneUnstructured_t structure, or at cAp systems used to generate the geometry, the CAD files
several levels of the boundary condition hierarchy. If ityyhere the geometry is stored and the list of CAD entities
is defined simultaneously within @GNSBase_t data  thin these files corresponding to the given family. There
structure, and Zone_t contained inNCGNSBase_t, the s no restriction on the CAD system as long as it supports
reference data defined for the zone supersedes the globglzp entity attributes, used as handles in the referencing
definition within that zone only. This relationship is process. A mesh may be associated to any number of CAD

displayed on figure 8. files, which may encompass several CAD systems. It is also
possible to use directly the CAD entity names to link the
CGNSBase t mesh to the geometry. In such case, the family names are
set to the CAD attributes and the list of CAD entity
attributes in theGeometryReference_t data structure is
Zone_t ReferenceState_t | < global defauit left blank.
,—l—\ The FamilyBC_t data structure provides an alternative for
GridCoordinates_t| | Referencestate t | o zone default the definition of boundary conditions. As discussed earlier
in section 2.3.6, the boundary conditions may be defined on
Fig.8 Globally Applicable Data and Precedence mesh patches under each zone structure. This has the
advantage of providing a means for storing mesh related
2.3.12 Family Data Structure: Family_t flow solution data. The other option for specifying
) boundary condition is to link them to the CFD families.
The Family t  data structure connects the geometry\ypen poth mesh patch boundary condition and family

data of t.he lvan_c()ju; comﬁonents OI] a model to thﬁboundary condition are defined simultaneously for a same
computational grid in such a way that given a mes boundary, the definition attached to the mesh entity has

sgrface, the underlying geomet.ry can be.d.ete.rmlne:d, 0;5recedence over the one defined for the geometric family.
vice versa. The geometry-to-grid connectivity is defined

by associating node or cell regions to geometric entitied e main advantage of associating the boundary conditions
described within a given CAD data file. The SIDS to the families is that the mesh topology or mesh density
specification does not define a new standard for thén@y be modified without altering the boundary condition
storage of CAD data, but rather establishes conventiongettings. Another motivation for choosing this alternative
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method is that any given boundary condition needs onlyThe entry structure of the SIDS, called tb&NSBase_t, is

to be defined once, even if it is applied to several patchesnapped to an ADF node labelgtlGNSBase_t. Figures 3

over multiple zones. TheFamilyBC_t structure and 10 illustrate the one-to-one correspondence between the
includes the boundary condition type and variousSIDS and the “SIDS-to-ADF Mapping”. There may be one
auxiliary data.

This concludes the overview of the SIDS. Reference 2 CGNSBase Node

provides a comprehensive definition of the SIDS | Label = CGNSBase_t, Name= (user defined)
conventions, data structures and data-name identifiers. DataType;l';éZ'T:]Z’;i'gir‘n:ér’]g;mn-vecmrzl
This information is also available at

http://www.cgns.org.

Structured Zone Node
. || Label = Zone_t, Name = (user defined)
2.4. The SIDS-to-ADF Mapplng Data Type = 14, Dimension = 2, Dim.Vector = IndexDimension,2

Data = VertexSize[IndexDimension], CellSize[IndexDimension]

As seen in the previous sections, the ADF and ADF Core

¢ R : Unstructured Zone Node
define a ne_W database format an,d its supportlng ] Label = ZoneUnstructured_t, Name = (user defined)
software, while the SIDS specify precisely the contents Data Type = 14, Dimension = 2, Dim.Vector = IndexDimension,2
of a CGNS archive. These two elements are combined Data = VertexSize[IndexDimension], CellSize[IndexDimension]
to form the CGNS hierarchical database specification.

: ) ; Family Nod
This coupling of the ADF and SIDS is called “SIDS-to- Label = Fam”yj',‘l',imz :e(user defined)
ADF Mapping”. It transfers the constituents of the SIDS | Data Type = MT, Dimension = N/A, Dim.Vector = N/A

Data = N/A

to an underlying ADF structure. Each data structure
defined in the SIDS is mapped to one or more ADF
nodes, while maintaining the hierarchical organization of

the SIDS. The result is called a CGNS database. i many coNsBase_t nodes in a CGNS file. The index
consists of a sub-tree of an ADF file or files rooted at agimension [ndexDimension ) of the computational space

node IabgledCGNSBase_t. It Sonforms to the SIDS , is stored in the data field of theGNSBase_t node. The
model as implemented by the “SIDS-to-ADF Mapping” g4t type is therefore integer, specifically “I4” (using the
specification, thus may be accessed using the ADF COr@pr nomenclature). In this case, the dimension and

library. dimension vector are both equal to one.

The “SIDS-to-ADF Mapping” specification associates the cgnsBase_t node may have several types of children.
each piece of information defined in the SIDS 10 &tphg gata structure for a single block structured zone, located
precise location in the ADF structufe.ln most cases, directly under theCGNSBase_t node, is an ADF node
the ADF node label holds the data structure typejapeledzone t. The data field forzone_t holds the
identifier as defined by the SIDS. For example, a zon&, mper of vertices and cells within each dimension of the
defined using the data structureZonet Or  compytational domain. The data type is 14, the dimension
ZoneUnstructured_t in the SIDS would be associated of the data array is 2, and the dimension vector is
with an ADF node labeled Zonet — Or  (|hgeypimension , 2). For a structured 3D zone, this
ZoneUnstructured_t  in the CGNS database. translates into a 82 array of integers. The first three
The names of the children nodes must be unique for anyalues express the number of vertices within each
given parent. For example, a CGNS database containdimension, while the last three contain the number of cells.
as many children of typone_t as there are structured £o-hzone t node may contain on@ridCoordinates_t

grid zones in the domain; each zone must have a distinqjiode one ZoneGridConnectivity_t node.  one
name. By convention, some ADF node names withintheZOneéC t node. and one or se_veréllowSolutior; ¢

CGNS hierarchy are fixed. However most node nameg,gges as shown in figure 11. These nodes do not contain
can be specified by the user. The “SIDS-t0-ADF 5 ata (data type = MT), but instead, open new branches

Mapping” specification states that the supporting ¢ the ADF tree structure for storage of their respective data
software must provide for default naming capability. gy ctures. Grid coordinates, for example, are stored using
The default names are constructed by replacing the labgf,, generic node typ®@ataArray t . Each coordinate

Fig.10 SIDS-to-ADF Mapping of Upper Levels

last two characters () with a positive integer. yector is contained into an ADF node labeled
According to this convention, the names fdistructured DataArray t and located directly under the
zones under the sam@GNSBase_t data structure are GridCoordinates_t node. The arrays of coordinate

Zonel, Zonez, Zones, ..., ZoneN values carry the dimension specified IglexDimension
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and may be written in single or double precision (R4 or(CGNS API), and then a few words describing
R8 data type). The dimension vector is a function of theunambiguously its functionality. The Fortran interface
vertex size and the number of rind-planes associatedames are built identically, with the addition of the suffix
with the data array. “_f " to distinguish them from the C function nomenclature.
For example, a CGNS zone may be read using the C
function cg_zone_read or the Fortran interface routine

Structured Zone Node

Label = Zone_t, Name = (user defined) cg_zone_read_f
Data Type = |4, Dimension = 2, Dim.Vector = IndexDimension,2 . . . . .
Data = VertexSize[IndexDimension], CellSize[IndexDimension] The first Step when accessing a CGNS file consists in

opening the data exchange process. This is accomplished
by the functioncg_open . This routine opens a new or

Zone Boundary Conditions Node

] Data T LabehIA;Z;neBC__t, Nam:=DZon\ijC A existing CGNS file, initializes the file if it is new, and set up
ata Type = M. Dimension = A, bim-Vector= the library internal data structures. An existing CGNS file

may be opened to read or modify its contents, while a new
one may only be opened for writing. One of the arguments

Flow Solution Node
Label = FlowSolution_t, Name = (user defined)

B Data Type = MT, Dimension = N/A, Dim.Vector = N/A of the functioncg_open is therefore to specify the action or
Data = N/A mode desiredREAD WRITEor MODIFY. The last step when
Zone Grid Connectivity Node completing the data exchange with a CGNS file is
Label = ZoneGridConnectivity_t, Name = ZoneGridConnectivity performed using the routineg close This function
Data Type = MT, Dimension = N/A, Dim.Vector = N/A L ' . 3
Data = N/A updates the contents of the file stored on disk and terminates
: : the dialogue.
Grid Coordinates Node
L [L)atbelT= Grid(ﬁ?AOTOfginatES._tv Na,;”/TDG”“VCO‘t"di“ah“‘j; When the file is opened withg_open , in modesREADor
ata e = , bimension = , bim.Vector = . .
P Data = N/A MODIFY, the CGNS library parses the entire tree structure
[ and loads most of its contents in memory. This internal
Coordinate Array Node representati.on. of the data is §tore<_j in memory gsi.ng C
Label = DataArray_t, Name = (user defined) structures similar to those described in the SIDS. Similarly,

Data Type = R4 or R8, Dimension = IndexDimension, Dim.Vector = DataSize[]
Data = Grid Coordinate Values

when a CGNS file is opened with mod&/RITE the
information transmitted by the CFD application is first
Fig.11 SIDS-to-ADF Mapping of a Zone accumulated in the internal data structure, and only written
to the storage media when the data exchange is terminated
These few examples demonstrate the process followed i@sing cg_close . The use of an internal data depiction
map the SIDS contents onto the ADF Structure.affords the advantage of increasing the performance of
Reference 4 provides a complete description of the entirgupsequent 1/0 requests, since the information is readily

“SIDS-to-ADF  Mapping”  specification. This  available without requiring additional tree parsing. Another

information is also available at http://www.cgns.org. benefit stems from limiting the relatively slow
communication to and from the storage media, since most of

2.5 The CGNS Library these data exchanges take place all at once, when calling

This section outlines the CGNS library, which was cg_open orcg_close

designed to ease the implementation of CGNS by/Vhile cg_open and cg_close take care of the
providing developers with a collection of handy 1/O communication between the storage media and the library

functions® Since knowledge of the ADF core is not internal data representation, the other functions of the
required to use this library, it greatly facilitates the task CGNS library handle the data exchange between the CFD

of incorporating the CGNS system in any CFD applications and the memory depiction of the data. This is

applications. schematically demonstrated in Figure 12. This
The CGNS library is based on the SIDS and “SIDS-to-
ADF Mapping” specifications, and built using the ADF Internal Data
Core. It allows reading and writing CGNS databases Representation
through the use of a user friendly APIl. The library is CFD AP
written in ANSI C to enhance its portability. However, Application [
each function has a Fortran77 interface counterpart to \
ease implementation in Fortran77 or Fortran90 ADF Core | Storage
applications. Each C routine name has two segments, | Media
first the prefix ‘cg” indicating the origin of the routine Fig.12 Data Flow
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representation of the data flow has one exception. IBCType_t = {BCInflowSupersonic,
order to reduce memory usage and improve execution BCSymmetryPlane,...,
speed, large arrays such as grid coordinates or flow BCWallViscous}
solutions are not actually stored in memory. Instead
only their ADF ID numbers (addresses) are recorded i
the internal data representation. If these large arrays al
requested in subsequent function calls, the ADF
addresses enable the software to locate thenf\:

immediately on disk, without requiring a search throthdefined as integer parameters in the include file

the tree structure. Likewise, when a CGNS file is ib fh This fil t be included int Fort
opened in writing mode, the large arrays transmitted tg 9ot ’ IS fiie must be included Into any Fortran

the library are immediately written to disk. Since the appllcagon ffus:jngththese kteyvytor(tjs. 'll('he.thutsll:zDaStlon of
hierarchical data structure holds only the root node a#eywor > affords the opportunily to Work wi name

this point, the nodes containing the large data arrays argentifiers in (.:FD applications, With.OUt h.a.ving to deal with
recorded directly under the ADF root node. When thechargoter string variables. Thg |dent|f|eCi_werset or
file is closed, these arrays are moved (by reference Onlygbutyng;tol _may be gsed integrally n thg CFD
to their appropriate location in the CGNS hierarchy. pplication to identify an interface type. Likewise, the
keywords Vertex , CellCenter , FaceCenter are
The CGNS library was designed to mirror the structuremeaningful to the library, when specified in a function’s
of the SIDS. Each type of data structure defined in thegrgument list, to describe a grid location. The CGNS library
SIDS is supported in the CGNS library by a set of pffers these lists of keywords as a convenience to the
reading and writing functions. For example, the dataprogrammers using the API. Their utilization enhances the
exchange for a structured zone is completely handled byode visibility while facilitating variable declaration and

These specialized variable types are defined in the C include
ile cgnslib.h by an enumeration of keywords admissible
or any variable of these typesgyedef enum ). This file

ust be included into any C application program using
ese data types. Similarly in Fortran, these keywords are

the following three functions: memory allocation.
Q cg_nzones(...) :read the number of zones.  Another asset of the CGNS library is to directly retrieve the
Q cg_zone_read(...) :read the zone information. ADF 1D number of any ADF node in the database. A

simple function call reveals the ADF address of nodes such
o ) ) as CGNSBase_t, Zone_t , GridCoordinates_t ,
Similar sets of functions exist for every data structurezoneBc t, etc. This feature helps implementing any type

defined by the SIDS. The hierarchical organization off site specific information, which may not yet be supported
this API facilitates the implementation of CGNS in CFD py the CGNS SIDS and API.

applications, while insuring its extensibility for future
development of the SIDS framework.

Q cg_zone_write(...) :write a new zone.

Site specific data may be included anywhere within the
CGNS hierarchy without hindering the database
Most C functions of the CGNS library return an integer compatibility with the CGNS API. In order to include site
value representing the error status. The Fortran functiongpecific data structures, these must be simply recorded in
contain an additional argumentr , which holds the  ADF nodes tailored for their use, by means of the ADF
value of the error status. An error status different fromcore.  Since the CGNS API searches for specific node
zero reports the occurrence of a problem during thgapels while ignoring the others, any addition of node types
execution of a function. Precise and concise effohas no effect on its functionality. The CGNS library
diagnosis may be printed using one of the error handlingoftware and  documentation are available at

functions of the CGNS library: http://www.cgns.org.

Q cg_get_error() return the error message ina  This concludes the description of the CGNS elements and
character field. their relationship with one another. The next section

Q cg_error_print() :get and print the error demonstrates the implementation of CGNS by means of
message. three small examples, which are thoroughly explained.

O cg_error_exit() get and print the error Then it reviews the status of the CGNS system

incorporation in various research and industrial CFD
applications. Finally it presents the schedule of releases of
The CGNS library defines variable types in conformancethe CGNS system’s software and documentation, planned
with the SIDS nomenclature. These facilitate thefor 1998, and explains the differences between the release
implementation of the CGNS API. The various versions.

boundary condition identifiers, for example, are part of

an enumeration for the variable tyB€Type_t .

message, and terminate program execution.
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3. Implementation

The number of zonesNZones) within eachCGNSBase_t
data structure is extracted using the functi@nnzones .

Section 3.1 shows a few examples on how to use thghe zone namezpneName) and size ZoneSize ) are read

CGNS library to read and write CGNS databases. Inyiih the routine cg_zone_read

for each zone number

each example, the error checking, variable declaration'@ZO”eNo)_ Note that the zone size is a vector of integers

and memory allocations were omitted to lighten the text.containing both the numbers of vertices and cells within
The parameters returned by each function are printed ig5ch computational dimension.

bold to distinguish them from the input arguments.

3.1 Examples

3.1.1 Read a Multi-Block Structured Mesh
The following C program (figure 13) reads the-

coordinate vector of all structured zones in all the

CGNSBase_t data structures included in a CGNS file.

The functions and variables used in this example ar

described in detail in the following paragraphs.

cg_open(FileName, MODE_READ, & FileNo )
cg_nbases(FileNo, & NBases);
for (BaseNo=1; BaseNo<=NBases; BaseNo++){
cg_base_read(FileNo, BaseNo, BaseName,
&IndexDimension );
cg_nzones(FileNo, BaseNo, & NZones);
for (ZoneNo=1;ZoneNo<=NZones;ZoneNo++){
cg_zone_read(FileNo, BaseNo, ZoneNo,
ZoneName, ZoneSize );
cg_coord_read(FileNo, BaseNo, ZoneNo,
“CoordinateX”,RealSingle,
RangeMin, RangeMax, X);

B .
cg_close(FileNo);

Fig.13 Example Reading Bases, Zones and Coordinates

In this first example, a CGNS file, identified by the
character variableFileName , is opened for reading
(mode =MODE_READ Since several CGNS files may be
opened simultaneously, the functiog_open returns a

file number FileNo ). It consists of an integer value
uniquely identifying a file in the CGNS library. The file

number must be used in every subsequent function calls
to specify which of the opened CGNS files must be

accessed.

The next function,cg_nbases , returns the number of
CGNSBase_t structures in the CGNS fileNpases).
There is no limit on the number acfGNSBase_t data

structures contained in a file. Several databases could b
used to record slightly different configurations of a same

model for example. TheGNSBase_t information is
read with the functioncg_base_read Given a file
number and a database numbBadgeNo), this routine
returns the name of a databasgageName) and the
dimension of the computational
(IndexDimension ).

e

domain

The functioncg_coord_read returns the location vector of

a coordinate in the format and range requested. The
coordinate requested is specified using its data-name
identifier, in this caseCoordinateX The precision in
which the data array must be provided to the CFD
application may be set, regardless of the data type used to
store this information on disk. The CGNS library handles
the conversion if necessary. A data array recorded as
double precision in the storage media may be read as single
precision by the CFD application, or vice versa. This
routine supports two data formatRRealSingle and
RealDouble , for single and double precision values
respectively.RealSingle andRealDouble are defined as
keywords in the library include file. The data array range
requested is specified by the integer vecteasigeMin and
RangeMax. These vectors specify the minimum and
maximum computational index value of the range requested,
within each dimension.

3.1.2 Read the Solution Data of a Structured Zone

Figure 14 shows an example of a Fortran program reading
the solution data contained in a zone. A zone may hold any
number of flow solutions. These could be recorded at
different time steps for example. Each flow solution may in

turn contain any number flow variables. The functions and
variables used in this example are detailed in the following
paragraphs.

call cg_nsols_f(FileNo, BaseNo, ZoneNo,
NSolutions , ier )

do SolutionNo=1, NSolutions

call cg_sol_info_f(FileNo, BaseNo,
ZoneNo, SolutionNo, SolutionName
GridLocation , ier )

call cg_nfields_f(FileNo, BaseNo,
ZoneNo, SolutionNo, NFields

do FieldNo=1, NFields

call cg_field_info_f(FileNo, BaseNo,
ZoneNo, SolutionNo, FieldNo,
DataType , FieldName , ier )

call cg_field_read_f(FileNo, BaseNo,
ZoneNo, SolutionNo, FieldName,
RealDouble, RangeMin, RangeMax,

ier )

Values , ier )
enddo ! field loop
enddo ! solution loop

Fig.14 Example Reading Flow solution Data
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Each Fortran function holds one more argument than its

C counterpart. The error statust , is the return value for (ConnNo=1; ConnNo<=NConns; ConnNo++)
of most C routines. Since Fortran subroutines do not | { o
allow for return value, the error status is included in the cg_conn_write[FileNo, BaseNo, ZoneNo,

t list ConnectName, GridLocation,ConnectType,
argument list. PointSetType, Npoints, DonorName,

The Fortran routineg_nsols_f  returns the number of NpointsDonor, DonorDataType, Points,
flow solutions recorded for a particular zone of a CGNS ) DonorPoints,  InterfaceNo  );
database. A zone may hold none to several flow solution | £, (HoleNo=1; HoleNo<=Nholes;HoleNo++){

sets. Each flow solution seS¢lutionNo ) is qualified cg_hole_writefFileNo, BaseNo, ZoneNo,

by its name $olutionName ) and by the grid location of HoleName, GridLocation, PointSetType,

its solution data, such as/ertex , CelliCenter NPaints, Points, HoleNo)

EdgeCenter , etc. These may be extracted using the }

function cg_sol info f . The number of solution Fig.15 Example Writing Zone Grid Connectivity
vectors (fields ) contained in a solution set is obtained

with the routinecg_nfields_f . location adoptedyertex or CellCenter . The type of
The function cg_field_info_f is optional. It connectivity being recor_ded is specif_ied V\_/t‘_uonnectType
determines the name of the solution veckieiName ) to one of the following name identifiersOverset |,
if it is not yet known by the application. It also returns Abutting  or Abuttingltol . DonorName holds the name

the data type@ataType ) used to stored the solution on of the adjz?\cent zone (donor) interfacing with the current
disk. The solution vectors are read using the routineZOne (receiver).

cg_field_read_f . This routine works the same way The sub-range of nodes or cells on the receiver side may be
ascg_coord_read  defined in the previous example. It defined using a range or a discrete list of points or cells. If a
allows setting the name of the variable desiredrange of points or cells is used, tReintSetType s set to
(FieldName ). Itis advised but not mandatory to use the PointRange . When a discrete list of points or cells is used,
data-name identifiers defined in the SIDS, égnsity ,  the PointSetType  equalsPointList . The number of
Massflow , etc. The precision of the solution vector points or cells is defined bipoints  on the receiver side
returned by the function may be set by the CFDand NpointsDonor  on the donor side (adjacent block).
application RealDouble or RealSingle )  For a point set typePointRange , this number always
independently of the format used to record these data osquals two. For a point set typ®intList , it equals the
disk. As for coordinate vectors, the CGNS API number of points or cells in the point set. The list of points
compares the data type on disk with the one requestedr cells is recorded iPoints  on the receiver side and
and automatically accomplishes any necessarponorPoints  on the donor side. The donor points may
conversions. Finally, the solution vectors may be reacbnly be defined using RointList

only partially, within the range prescribed with
RangeMin and RangeMax. This is particularly useful
when plotting cross section results, for example.

In the particular case of a point-to-point matching between
the two zones, the donor points may be expressed with
integer values. For all other cases, the donor points are real
3.1.3 Write Zone Connectivity and Overset Holes values comprising the interpolation factors used to locate
Three types of block-to-block connectivity are supportedth® receiver points in the donor zone. The variable
by the SIDS and CGNS API: one-to-one abutting, whichPonorDataType _holds the format used to define the donor
is also called point matching or CO, abutting with Points. The eligible data types aigeger , RealSingle
mismatched points and oversets. The grid connectivit)f"nd RealDouble . This function returns an index for the
information for overset grids must also account for theinterface number.

overset holes within each zone. The C example showfThe functioncg_hole_write  writes a new overset hole in
on figure 15 demonstrates how to write the connectivityan existing zone. The overset hole name is specified by
information for the three types supported, as well asHoleName. Its location is defined by a list of indices, which
overset hole information, using the CGNS API. may refer either to vertices or cells location. The grid
The routinecg_conn_write  can be used to write any of location is identified withGridLocation , and may take the
the three types of block-to-block connectivity for a given Valuesvertex or CeliCenter . The extent of the overset
zone. The interface may be identified with a namehole is specified using one or more range of points or cells
ConnectName. The computational mesh indices used (PointRange ), or with a discrete list of all points or cells in

in the definition of the zone sub-range may refer tothe overset holeRpintList ). The type of point set used is
vertices or cells. The variableridLocation ~ holds the ~ 'écorded irPointSetType . The number of points or cells
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in the point set is defined bypoints and the list of themselves are stored in compact C binary format. They are
points or cells is recorded iPoints . This routine made machine independent through internal byte ordering

returns an index number for the overset hole. translations, performed as needed and invisible to the user
or application. Efficient linking capacity allows the
3.2 Applications Supporting CGNS partitioning of the data over several files without reducing

o ] the performance of the data exchange.
Several applications have already implemented theh . defined in the SIDS ide f h
CGNS standard successfully. Researchers at NASAI— e conventions defined in the SIDS provide for the

Ames have incorporated the CGNS data exchangéecording of an extremely complete and flexible problem

capability into a developmental version of PEGASUSdescription. Due to the nature of typical CFD data sets, it is
and OVERFLOW, for fluid dynamics computation on possible to include in the CGNS data structure thorough
overset grids Similarly the CGNS system has beergescription of the data with relatively little storage overhead

implemented in a research version of the CFL3D solver"jmd performance penalty.

at NASA Langley, which performs flow computations The CGNS system supports structured, unstructured and
on multi-block, one-to-one abutting meshes. The ICEMmixed topology, where multi-block connectivity may be
CFD Visual3 post-processor reads CGNS files directlyeither one-to-one abutting, mismatched abutting or overset.
without the need for data format translation. A database may contain any number of structured and/or
Additionally, several CFD applications such as Plot3D,unstructured zones. For unstructured zones, the element
NPARC, TLNS3D, ICEM CFD and WIND have connectivity can be stored for a wide range of linear and
translation routines to and/or from the CGNS file higher order element shapes. The mesh data is linked to the
standard. CAD data within the CGNS system to facilitate quick re-

The CGNS system is being released to the public for the(neshing after design changes or mesh optimization.

purpose of establishing a standard for aerodynamic dat&he flow solutions may be defined at the vertices, or at cell,

storage. Version 1.0 of the CGNS system comprises théace or edge centers. Solution vectors are stored using
ADF and ADF Core software and documentation, theprecise naming conventions. Any number of flow variables

SIDS documentation for multi-block structured CFD may be recorded, with or without the use of standardized
analysis, the corresponding “SIDS-to-ADF Mapping” names. Boundary conditions may be defined on the
specification, and the CGNS library for most structurescomputational mesh and/or on the CAD geometry,

defined in the SIDS. A second release is planned fomhichever is best suited for a particular CFD application.

September 1998, which will include support for The CGNS system also provides for the storage of several
unstructured and hybrid configurations, as well asypes of auxiliary data. This include the conventions for

geometry-to-mesh association. archiving the governing flow equations, the reference state
) guantities, the convergence history information, any generic
4. Conclusion discrete or integral data, the dimensional units and

xponents, and the nondimensionalization information.

This paper described the CGNS system, from its originafJ , .
X . : . ser's comments or documentation may be appended nearly
conception to its successful implementation. It has been

developed with participation from NASA and US anywhere. Site specific data can be incorporated throughout

airframe manufacturers to help stabilize the archiving of CGNS database without hindering its compatibility with

aerodynamic data. The CGNS system is conceived t(t)he CGNS API.

support seamless communication of analysis databasdie CGNS system may be implemented in any CFD
between user sites, system architectures, and CFBpplication by way of a complete and extensible library of
applications, without concerns for 1/O compatibility. It functions. The API is platform independent and can be
incorporates a set of conventions for the processing anéasily implemented in C, C++, Fortran77 and Fortran90
archiving of computational fluid dynamics data, aimed atapplications. It performs extensive error checking on the
providing a standard for processing CFD information. ~ database and informs the user of any irregularities via
The CGNS system is built over a hierarchical dataprecise_error.diagnosis messages. Currently the CGNS
structure called ADF. The hierarchical quality of this system Is ava_|lable on mo;t architecture cor_nmonly used for
data structure is particularly suited for the storage ofCFD analysis: - Cray/Unicos, SUN/SoIar!s, SGI/RIX,
. . o . IBM/AIX, HP/UX, DEC-Alpha/OSF.  Windows NT
CFD information, which is typically composed of a ' ' . .
small number of very large arrays. The tree structur support, on Dec and Intgl p!atformg, is planned in the near
e%uture. Several applications, in the CFD research

may be quickly traversed and sorted without the need c’communit and in industry, have already incorporated the
processing irrelevant information. The databases y Yy y P
CGNS standard successfully.
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The CGNS system is offered to the CFD community for The authors wish to express the noteworthy contributions of
the purpose of establishing a standard for aerodynamia few individuals who dedicated special effort to this
data storage. Documentation, source code, examples pfoject. Thomas Dickens’'s software knowledge was
implementation, and compiled libraries are available atvaluable in the design and realization of the ADF Core, now
www.cgns.org, and online support may be obtained bymaintained by Dan Owen. Ben Paul secured the initial
writing to CGNS-Support@cgns.org. By improving the funding and shepherded the project through most of the
interoperability of existing and future CFD tools, contract. Wayne Jones contributions were invaluable for
software development affords the opportunity to focustesting the CGNS abstractions in real code, helping in the
on functionality and reliability. The CGNS system development of the ADF Core and creating the first high
should lead to the development of shared, reusabléevel functions. Chuck Keagle designed and executed
software selected on technical merit without concern forcareful testing procedures for the ADF Core. Gary Shurtleff
I/O compatibility. wrote the TLNS3D and NPARC prototypes, which were the
The ultimate goal of the CGNS system is to provide afirst examples of working CG_NS _s_oftwa_re. Special thanks
standard designed to satisfy the requirements of thg° to Chris Rumsey and C_etln Kiris’s pioneering efforts to
whole CFD community. Consequently, the present andMPlement the CGNS API in NASA solvers. Ray Cosner
future developments of CGNS are closely tailored to theVas @ reliable supporter who helped move things forward
need of CFD groups in industry, government researchVhen progress slowed. Mark Fisher's expertise in data
centers, and academia. Future projects may include th@anagement brought insightful suggestions for the design
support of material properties, chemistry data, real gagf _the CGNS_API. Finally, thanks to Susan Jacc_)b’s initial
effects, electromagnetic data, multi-phase flow, etc. Th&uidance, which helped move the team together in the same
CGNS system could be extended to other types offiréction.

engineering analysis data, and therefore serve multi-

disciplinary applications. Experimental results such as References

pressure paint data, flight test and wind tunneli ~gng Team, “The CGNS System Overview and Entry
measurements could also be incorporated to the SID§.evel Document”, Draft, Version 1.0, May 1998.

gh;f] would a.”O\IN a gC:ObaI sta}ndartd lfo:jtft]e reCﬁrSIng OfZAIImaras, S., “CGNS Standard Interface Data Structures”,
oth numerical and experimental data. ikewise, i ot May 1997.

advanced diagnosis on CGNS grids would be a handy . , -

feature. In addition, the software capability will need to CGNS Team, “The ADF User’s Guide”, May 1997.

follow the ever-changing trend of the industry. Runtime® CGNS Team, “CGNS File Mapping Manual’, Draft,

data management or parallel data handling (MPI) couldOctober 1996.

become a desirable asset for CFD data processing.Poirier, D., “CGNS I/O Library”, Draft, September 1997.

Similarly, special compression tools may eventually bes cgirier w.J., Golos, F.N., Harrand, V.J., Przekwas, A.J.,

required to support complex unsteady 3D cases. ThecEp-DTF: A Data Transfer Facility for CFD and Multi-

future of CGNS resides primarily in the requirements of Disciplinary Analyses”36th Aerospace Sciences Meeting &

its users, and the CGNS team engages itself irExhibit AIAA-98-0125, Reno, NV, January 1998.

continuing to serve the needs of the CFD community. 7 “Getting Started with HDF”, National Center for
Supercomputing Applications (NCSA), University of
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